Comparative Analysis Without and With Sensitivity Encoding (SENSE) on Signal to Noise Ratio (SNR) and Scan Time of Axial T2 Flair MRI Brain

Authors

  • Diah Ranu Etikasari Program Studi Teknologi Radiologi Pencitraan, Departemen Kesehatan, Fakultas Vokasi, Universitas Airlangga, Surabaya, Indonesia
  • Muhaimin Program Studi Teknologi Radiologi Pencitraan, Departemen Kesehatan, Fakultas Vokasi, Universitas Airlangga, Surabaya, Indonesia
  • Eunike Serfina Fajarini Application Specialist MRI, GE Healthcare Indonesia, Jakarta, Indonesia

DOI:

https://doi.org/10.36590/jika.v6i2.775

Keywords:

scan time, sense, snr, t2 flair

Abstract

T2 FLAIR has a long scanning time, because T2 FLAIR has additional TI (Time of Inversion) so patients feel uncomfortable. The SENSE produces image quality, namely contrast and spatial resolution, which is the same as standard image reconstruction, but the scan time required is only half of the standard scan time. This research aimed to determined the difference between SENSE and non-SENSE techniques in axial T2 FLAIR MRI Brain on SNR values and scan time. This study used 16 samples from all patients with T2 FLAIR axial MRI brain at Gambiran Hospital using SENSE and non-SENSE techniques. The results of the image were evaluated by quantitative method, by giving ROI (Region of Interest) to the cerebral cortex, basal ganglia, thalamus and noise background, then the signal intensity obtained from the organ image and the standard deviation (SD) of the background of the image was calculated by dividing the average signal of the measured area by SD at the noise to obtain the SNR value. The results of the SNR value were analyzed by the Paired T-Test and tested with the SPSS version 25. There was a difference between the SENSE and non-SENSE techniques in the axial T2 FLAIR MRI brain to the SNR value. This difference is because the T2 FLAIR non-SENSE does not experience the reduction in phase encoding lines needed to fill the image k-space on each coil element, a potential deficiency is met by the elimination of wrapping information that results in high image resolution spatial.

Downloads

Download data is not yet available.

Author Biographies

Diah Ranu Etikasari, Program Studi Teknologi Radiologi Pencitraan, Departemen Kesehatan, Fakultas Vokasi, Universitas Airlangga, Surabaya, Indonesia

Program Studi Teknologi Radiologi Pencitraan, Departemen Kesehatan, Fakultas Vokasi, Universitas Airlangga, Surabaya, Indonesia

Muhaimin, Program Studi Teknologi Radiologi Pencitraan, Departemen Kesehatan, Fakultas Vokasi, Universitas Airlangga, Surabaya, Indonesia

Program Studi Teknologi Radiologi Pencitraan, Departemen Kesehatan, Fakultas Vokasi, Universitas Airlangga, Surabaya, Indonesia

https://scholar.google.co.id

Eunike Serfina Fajarini, Application Specialist MRI, GE Healthcare Indonesia, Jakarta, Indonesia

Application Specialist MRI, GE Healthcare Indonesia, Jakarta, Indonesia

References

Aja-Fernández S, Vegas-Sánchez-Ferrero G, Tristán-Vega A. 2014. Noise Estimation in Parallel MRI: GRAPPA and SENSE. Magnetic Resonance Imaging, 32(3): 281–290. https://doi.org/10.1016/j.mri.2013.12.001

Blaimer M, Heim M, Neumann D, Jakob PM, Kannenfiesser S, Breuer FA. 2015. Comparison of Phase-Constrained Parallel MRI Approaches: Analogies and Differences. Magnetic Resonance in Medicine, 75(3): 1086–1099. https://doi.org/10.1002/mrm.25685

Chian TC, Nassir NM, Ibrahim MI, Yusof AKM, Sabarudin A. 2017. Quantitative Assessment on Coronary Computed Tomography Angiography (CCTA) Image Quality: Comparisons Between Genders and Different Tube Voltage Settings. Quantitative Imaging in Medicine and Surgery, 7(1): 48–58. https://doi.org/10.21037/qims.2017.02.02

Cleary JOSH, Guimarães AR. 2014. Magnetic Resonance Imaging. Pathobiology of Human Disease. Amerika Serikat: Academic Press. https://doi.org/10.1016/B978-0-12-386456-7.07609-7.

Deshmane A, Gulani V, Griswold MA, Seiberlich N. 2012. Parallel MR Imaging. Journal of Magnetic Resonance Imaging, 36(1): 55–72. https://doi.org/10.1002/jmri.23639

Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW. 2015. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. Journal of Clinical and Experimental Hepatology, 5(3): 246–255. https://doi.org/10.1016/j.jceh.2015.08.001

Hamilton J, Franson D, Seiberlich N. 2017. Recent Advances in Parallel Imaging for MRI. Progress in Nuclear Magnetic Resonance Spectroscopy, 101: 71–95. https://doi.org/10.1016/j.pnmrs.2017.04.002

Hyun CM, Kim HP, Lee SM, Lee S, Seo JK. .2018. Deep Learning for Undersampled MRI Reconstruction. Physics in Medicine and Biology, 63(13): 1-16. https://doi.org/10.1088/1361-6560/aac71a

Khalil MA, Ashfaq A, Shahzad H, Qazi SA, Omer H. 2021. GPU Based Parallel Framework for Receiver Coil Sensitivity Estimation in SENSE Reconstruction. Magnetic Resonance Imaging, 80: 58–70. https://doi.org/10.1016/j.mri.2021.04.009

Liu, F, Duan Y, Peterson BS, Kangarlu A. 2012. Compressed Sensing MRI Combined with SENSE in Partial K-Space. Physics in Medicine and Biology, 57(21). https://doi.org/10.1088/0031-9155/57/21/N391

Morelli JN, Runge VM, Ai F, Attenberger U, Vu L, Schmeets SH, et al. 2011. An Image-Based Approach to Understanding the Physics of MR. Radiographics, 31(3): 849-866. https://doi.org/10.1148/rg.313105115

Niknejad MT. 2013. Fluid Attenuated Inversion Recovery. Radiopedia. https://doi.org/https://doi.org/10.53347/rID-21760.

Notoadmodjo, S. 2014. Metodologi Penelitian Kesehatan. Jakarta?: Rineka Cipta.

Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. 2012. Blipped-Controlled Aliasing in Parallel Imaging for Simultaneous Multislice Echo Planar Imaging with Reduced g-Factor Penalty. Magnetic Resonance in Medicine, 67(5): 1210–1224. https://doi.org/10.1002/mrm.23097

Westbrook C. 2022. Handbook of MRI Technique, 5th Edition. USA: John Willey and Son.

Westbrook C, Roth CK, Talbot J. 2019. MRI In Practice, 4th Edition. UK: Willey Blackwell.

Wright KL, Hamilton JI, Griswold MA, Gulani V, Seiberlich N. 2014. Non-Cartesian Parallel Imaging Reconstruction. Journal of Magnetic Resonance Imaging, 40(5): 1022–1040. https://doi.org/10.1002/jmri.24521

Downloads

Published

2024-08-31

How to Cite

Etikasari, D. R., Muhaimin, M., & Fajarini, E. S. (2024). Comparative Analysis Without and With Sensitivity Encoding (SENSE) on Signal to Noise Ratio (SNR) and Scan Time of Axial T2 Flair MRI Brain. Jurnal Ilmiah Kesehatan (JIKA), 6(2), 317–326. https://doi.org/10.36590/jika.v6i2.775